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Abstract

An alternative method of distributing weight vectors is discussed in this material which, in turn, will aid the
reference direction associated many-objective optimization algorithms. For an uniform scattering of a set of
points in space, the proposed approach poses a single-objective optimization (SOO) problem to maximize the
minimum pair-wise distance over all pairs of points in the set. This material presents a detailed description
of the problem and a discussion on some preliminary results of distributing points through this approach
with the help of Genetic Algorithm (GA), Differential Evolution (DE) and cooperative coevolution based
evolutionary algorithm with dynamically changing grouping structure (DECC-G).

1. An alternate method of distributing weight vectors

First, the conventional two layered approach of weight vector distribution is considered [1–4]. In this
approach, considering P divisions along each objective, the total number of reference directions (K) for an
M -objective problem [1, 2] is given by M+P−1CP . For M ≥ 8, if P ≥ M , no intermediate weight vectors
are chosen. Hence, a two layer approach [2] is used. For example, only with 2 divisions in the outside layer
and 1 division in the inside layer require K = 230 points or weight vectors for M = 20 objectives. This
increases the computational complexity of this approach of weight vector distribution for large values of M .
Moreover, as number of divisions is arbitrarily chosen for every different number of objectives, the number
of weight vectors also varies randomly i.e. no rule of increase in weight vectors with increase in number of
objectives is observed to keep the computational complexity manageable.

As an alternative approach, instead of using the systematic approach in [1, 2] for defining the direction
vectors, the distribution of the weight vectors is posed as a single objective optimization (SOO) problem.
Thus, the number of direction vectors could be regulated as desirable and it remains independent of the
number of objectives. It should be noted that the proposed algorithm ESOEA depends on the final dis-
tribution of the weight vectors and not on the strategy chosen to distribute the weight vectors. Hence,
independent of the optimization problem, at hand, for a given number of objective, the SOO routine can be
executed offline and its result can be used in the ESOEA framework.

2. Single objective optimization problem for distributing weight vectors

Distribution of a number of weight vectors, in the objective space, constitute the first step of the proposed
approach. Optimization follows along each of these weight vectors, which are defined between the origin
and certain points in the objective space. Thus, it is essential that the weight vectors are approximately
uniformly spread out in the objective space. Due to the disadvantages of the Das and Dennis’s approach
[1, 2] for declaring the reference vectors (discussed in Section 1), another approach is proposed in this work.
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Figure 1: Maximization of minimum pair-wise distance to uniformly distribute weight vectors

The central idea is to choose K points in objective space (W1,W2, · · · ,WK) by maximizing the minimum
pair-wise distance among these points, as shown in Fig. 1. This is posed as a single objective optimization
problem as given by Eq. (1) with D(.) indicating Euclidean distance [5], subjected to the constraint in Eq.
(3). The constraint serves the dual purpose of bounding the weights (the bounds are shown in Eq. (2)) such
that they lie on an unit hyperplane and of signifying the contribution of each objective for each instance of
the single objective optimizer ensemble, considering there are K such instances.

Maximize: min
i6=j

D(Wi,Wj)

where, Wi = {wi1, wi2, · · · , wiM},∀i = 1, · · · ,K
(1)

and, wij ∈ (0, 1],∀j = 1, · · · ,M (2)

subjected to |Wi| =
M∑
j=1

wij = 1,∀i = 1, · · · ,K (3)

The solution (XW ) of this maximization problem is required to encode a set of K M -dimensional points.
Thus, the solution is expressed as an array of length K × M , which has all the K points horizontally
concatenated as shown in Eq. (4).

XW = [W1,W2, · · · ,WK ] = [w11, · · · , w1M , · · · , wK1, · · · , wKM ] (4)

3. Experimental details of the proposed weight vector distribution approach

The proposed work is implemented Matlab R2017a using a 64-bit computer with 8 GB RAM and Intel
Core i7 @2.20 GHz processor. For investigating the optimization problem defined in Eq. (1) to (3) using an
evolutionary computation algorithm, the following specifications are essential:

1. Choice of evolutionary algorithm: Cooperative coevolution [6] based framework of Differential Evolution
with dynamic grouping structure (DECC-G) [7] is used to address this problem. This algorithm chooses
the different sub-components of the population randomly at every cycle, and thus, it is effective at
handling nonseparable problems.
For addressing the constraint maximization problem (Eq. (1) to (3)) all the steps of DECC-G gener-
ating a new candidate (initialization, mutation and crossover) are interspersed with normalization step
(defined in Eq. (5)). Thus, constraint handling is avoided during selection step [7–10].

XW =

[
w11∑
j w1j

, · · · , w1M∑
j w1j

, · · · , wK1∑
j wKj

, · · · , wKM∑
j wKj

]
(5)
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It is to be noted from Eq. (2) that while values tending to 0 are allowed, 0 is not allowed as a weight.
This ensures that normalization by Eq. (5) does not yield undefined weight values. However, with all
but one decision variable tending to 0, points are obtained, which are very close to the axes of the
objective space.

2. Representing candidate solutions: The candidate solutions are encoded as arrays of length K ×M (Eq.
(4)), followed by normalization (Eq. (5)), which represent K, linearly appended, M -dimensional points
in unit hyperplane.

3. Avoiding local optima: If the best objective value deviates by less than 10−4 (implying the best candi-
date is practically stagnant) successively for more than 10 generations, then a candidate is randomly
initialized within the bounds (given in Eq. (2)) of decision variables (weights), which after normalization
(by Eq. (5)), replaces a random candidate (except the best performing candidate) of the population. If
this randomly initialized candidate performs better than the best candidate of the population, it helps
in avoiding a local optima. Thus, such random replacement of candidates, when the best candidate has
been stagnant, reduces the chances of trapping at a local optima.

4. Termination criteria: For this work, either of the following two criteria are used for the stopping the
evolutionary algorithm:

• DECC-G is allowed to run for maximum of 200 cycles unless otherwise terminated.

• Similar to the strategy of avoiding local optima, if the best objective value deviates by less than
10−4 successively for more than 50 cycles (thus, giving several opportunities to escape from the
local optima), DECC-G is terminated.

Using these specifications, the optimization problem of distributing the weight vectors is realized and the
obtained set of weights, for a particular number of objectives (M), is saved for future use, as this set will
be invariant to all M -objective optimization problems.

Thus, using this solution for a set of K weight vectors, the proposed framework of Ensemble of Single
Objective Evolutionary Algorithm (ESOEA) is implemented.

4. Results and discussion on the proposed weight vector distribution approach

The parameter specifications and the results of the single objective optimization problem (distributing
weight vectors) are discussed in this section. The mean and standard deviation of the performance indicators
over 30 runs are noted for performance analysis of the proposed approach.

4.1. Single Objective Optimization Problem of Distributing Weight Vectors

The maximum value of the fitness for the concerned optimization problem is noted as a performance
measure. The performance of DECC-G [7] is compared with Differential Evolution (DE) [11] and Genetic
Algorithm (GA) [12]. The algorithm DECC-G is setup as per the specifications in [7]. It should be noted that
DECC-G uses both classical DE (DE/rand/1/bin) and DE with self-adaptive neighborhood search (SaNSDE)
[10]. DE/rand/1/bin [8, 9] indicates random mutation operation with 1 difference vector, followed by
binomial crossover operation is applied with DE. The following parameters are used to set up the evolutionary
algorithms:

1. Population Size: 100

2. Maximum generations/cycles: 200

3. Scale factor for DE/rand/1/bin: randomly in the range [0, 2]

4. Crossover rate for DE/rand/1/bin: 0.8 to favour new solutions

5. SBX Crossover parameters for GA: ηc = 5 with crossover probability = 0.9

6. Polynomial Mutation parameters for GA: ηm = 10 with mutation probability = 0.1

7. Binary tournament selection parameter for GA: 2

8. Number of weight vectors (K): 10×M
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Figure 2: (a) Resulting weight vectors using DECC-G (M = 3), (b) Resulting weight vectors using DE (M = 3), (c) Resulting
weight vectors using GA (M = 3), (d) Comparing fitness maximization for M = 5, (e) Comparing fitness maximization for
M = 10, (f) Comparing fitness maximization for M = 20

Table 1: Optimizing the Distribution of Weight Vectors

#Objs (M) Maximum fitness by DECC-G Maximum fitness by DE Maximum fitness by GA

3 0.1661± 0.0031 0.0771± 0.0093(+) 0.0520± 0.0023(+)
5 0.2135± 0.0064 0.1416± 0.0082(+) 0.0945± 0.0087(+)
10 0.2138± 0.0041 0.1895± 0.0045(+) 0.1171± 0.0087(+)
20 0.2965± 0.0077 0.2284± 0.0080(+) 0.1463± 0.0092(+)

Except for the number of weight vectors, all the other parameters have been set to the commonly used
specifications [5, 7, 9, 10, 12–14]. For the weight vectors, as an heuristic K = 10×M is chosen, keeping in
mind K > M is required for intermediate weight vectors in the objective space [2].

The mean and standard deviation of the maximum fitness value of the optimization problem (Eq. (1) to
(3)) are noted in Table 1 with the best values in boldface. Also, when the results of DECC-G are compared
with DE and GA for all the different test cases in Table 1, the p-values are less than 10−5 for a 95% confidence
interval, thereby rejecting the null hypothesis that the performance of DECC-G is equivalent to DE and GA
for the given problem. This significance of superior performance by DECC-G over DE and GA is indicated
by the + sign beside the fitness values observed in Table 1. A few random runs of the optimization problem
are illustrated in Fig. 2 for comparison.

Thus, DECC-G clearly outperforms DE and GA for this problem, and at the end of optimization, a decent
approximately uniform distribution of weight vectors are generated which can be used as direction vectors for
ESOEA. The underlying cause of this superior performance of DECC-G could be attributed to the fact that
with increase in number of objectives (M), the number of decision variables (K ×M = 10×M2) increases
exponentially and the optimization problem then becomes a large-scale optimization problem. Hence, the
cooperative coevolutionary approach performs better.
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5. Conclusion

This material describes an alternative approach for distributing weight vectors where the task is posed
as a constrained single objective optimization problem. Only preliminary experiments have been performed
to integrate its result with ESOEA. More experiments on several many-objective optimization problem are
required to establish the efficacy of the weight vector distribution generated through the proposed approach.
Nonetheless, this method provides flexibility to regulate the number of points/weight vectors with increase
in number of objectives. Hence, it helps to keep a check on the computational complexity of reference
direction associated many-objective optimization evolutionary algorithms for large number of objectives.
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