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Abstract

This is the supplementary material to demonstrate various concepts and experiments for performance anal-
ysis of the evolutionary frameworks proposed in “Decomposition in Decision and Objective Space for Multi-
Modal Multi-Objective Optimization”.

1. Introduction

This is a supplementary document for the article proposing graph Laplacian based Optimization using
Reference vector assisted Decomposition (LORD) for Multi-Modal Multi-objective Optimization Problems
(MMMOPs) [1] and its extension (LORD-II) for multi-modal many-objective optimization problems. This
material is to assist the readers to obtain a deeper insight on various topics associated with the proposed
approach. Kindly note that this is not a stand-alone document and bears reference to the main article
proposing LORD and LORD-II.

This material consists of the following topics in its different sections:

1. Section 2 of this material describes the various performance indicators used to analyze the performance
of LORD and LORD-II in the proposed work.

2. Section 3 provides the Cartesian coordinate plots of the Pareto-optimal sets (PSs) and the Pareto-fronts
(PFs) of the 22 test instances of CEC 2019 test suite [2] and compares them with those obtained by
MO Ring PSO SCD (a state-of-the-art algorithm for MMMOPs) [3] and LORD (or LORD-II).

3. Section 4 of this material analyzes the diversity attainment behavior of LORD in both objective space
and decision space.

4. Section 5 compares the outcome using kmeans clustering with spectral clustering to establish the benefit
of the latter.

5. To provide an idea of the computational burden of the proposed algorithms, Section 6 presents an
analysis.

6. Finally, the material is concluded in Section 7.

2. Brief Description of Performance Indicators

This section briefly describes the various performance indicators used to analyze the performance of
LORD and LORD-II in the proposed work.
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2.1. Convergence Metric

Convergence Metric [4, 5] (also known as generational distance [6]) indicates the convergence of the
solutions in the estimated Pareto-optimal surface to the true Pareto-optimal surface. Let A be a non-
dominated set of solutions and HCM be a set of several points are sampled uniformly across the Pareto-
optimal surface. Convergence metric (CM) is estimated by (1) as the sample mean of the minimum Euclidean
distance DE(.) of the objective vectors estimating the Pareto-Front (AF = {F(Xi)|Xi ∈ A}) from the points
in the reference set (Hj ∈ HCM ), over the number of solutions in the approximated Pareto-Front. If CM
is evaluated in the decision space HCM is a representation of the true Pareto-optimal Set and instead of
F(Xi) ∈ AF, Xi ∈ A is considered in (1).

CM(AF,HCM ) =

1

|AF|

|AF|∑
i=1

(|HCM |
min
j=1

(DE (F (Xi) ,Hj))

)
,

where F (Xi) ∈ AF and Hj ∈ HCM

(1)

2.2. Inverted Generational Distance

Inverted Generational Distance (IGD) [7, 8] gives an indication of the convergence as well as the diversity
of the approximated Pareto-Front. Let A be a non-dominated set of solutions and AF = {F(Xi)|Xi ∈ A}
be the estimated Pareto-Front. Similar to the evaluation of CM , IGD also requires a set HIGD of NIGD

points sampled uniformly over the true Pareto-Front (if evaluated in the objective space). IGD is estimated
by (2) as the sample mean of the minimum Euclidean distance DE(.) of the points in the reference set
(Hj ∈ HIGD) from the objective vectors constituting the approximated Pareto-Front (F(Xi) ∈ AF), over
the number of solutions in HIGD. If IGD is evaluated in the decision space HIGD is a representation of the
true Pareto-optimal Set and instead of F(Xi) ∈ AF, Xi ∈ A is considered in (2). In this work, IGDF is
used to represent IGD in objective space and IGDX is used to represent IGD in decision space.

IGD(AF,HIGD) =

1

|HIGD|

|HIGD|∑
j=1

(|AF|
min
i=1

(DE (F (Xi) ,Hj))

)
,

where F (Xi) ∈ AF and Hj ∈ HIGD

(2)

2.3. Hypervolume Indicator

Hypervolume Indicator [4, 9] can also represent both convergence and diversity information using a single
value and also its evaluation is independent of the knowledge of the true Pareto-Front. For its evaluation, a
hyper-rectangle is considered between a reference point (RHV ) and the origin of the objective space. A set of
points (say HHV ) is randomly sampled in this hyper-rectangle using Monte-Carlo simulation. Hypervolume
Indicator (HV ) is given by (3) which yields the fraction of the points in HHV which are Pareto-dominated
by the non-dominated set of solutions, approximating the Pareto-Front (denoted by AF). For its evaluation,
an attainment function (αHV (.)) is defined which returns 1 when a point Hj ∈ HHV is dominated by
any solution (F (Xi) ∈ AF). Hypervolume Indicator is given by the average of the values returned by the
attainment function over the set of points belonging to HHV .

HV (AF,HHV ) =
1

|HHV |

|HHV |∑
j=1

αHV (Hj ,AF) ,

where Hj ∈ HHV and αHV (Hj ,AF) ={
1, if ∃F (Xi) ∈ AF with F (Xi) ≺ Hj

0, otherwise

(3)
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2.4. Pareto-Set Proximity

Pareto-Set Proximity (PSP) [3] is used to evaluate the similarity between the approximated Pareto-
optimal Set (A) and the true Pareto-optimal Set (represented by a set HIGD of NIGD points sampled
uniformly on the true Pareto-optimal Set). PSP is given by (4) where cov rate represents the cover rate
(overlap ratio of the approximated Pareto-optimal Set to the true Pareto-optimal Set) and IGD (A,HIGD)
represents IGDX. In (4), xmin

i and xmax
i represent the minimum and maximum along the ith decision variable

over the approximated Pareto-optimal Set, respectively. Similarly, xMIN
i and xMAX

i represent the minimum
and maximum along the ith decision variable over the true Pareto-optimal Set1, respectively. While cov rate
indicates overlap, IGD (A,HIGD) represents convergence and diversity of the approximated Pareto-optimal
Set with respect to true Pareto-optimal Set. Thus, PSP quantifies an overall quality of the approximated
Pareto-optimal Set.

PSP (A,HIGD) =
cov rate

IGD (A,HIGD)

where cov rate =

(
N∏
i=1

γi

) 1
2N

,

γi =


1, if xMAX

i = xMIN
i

0, if xmin
i ≥ xMAX

i ∨ xmax
i ≤ xMIN

i

zi, otherwise

and zi =

(
min(xmax

i , xMAX
i )−max(xmin

i , xMIN
i )

xMAX
i − xMIN

i

)2

(4)

2.5. Diversity indicator: D metric

This indicator is a measure of the diversity of the population in the objective space [10]. Let SG
k represent

the number of objective vectors associated with the kth reference vector at generation G. Ideal value of
SG
k = SG

ideal = npop/ndir where npop is the size of the population and ndir is the number of reference vectors.
At generation G, D metricG is defined by (5) which has an ideal value of zero implying best diversity. A
higher value of D metric implies poor diversity. Thus, D metric of the population at termination of an EA
is gives the diversity attained by the estimated Pareto-Front [10].

D metricG =
ndir
npop

√√√√ndir∑
k=1

(SG
k − SG

ideal)
2 (5)

2.6. Non-Contributing Solutions and Associated Indicators

As seen from (2), IGDX evaluation involves the term min
Xi∈A

(DE (Xi,Hj)) where Hj ∈ HIGD. A solution

XNS
i ∈ A is called a non-contributing solution, if for a given representation of the true Pareto-optimal Set

(HIGD) and a given set of non-dominated solutions (A) the condition in (6) is satisfied [6, 11].

@Hj ∈ HIGD : DE

(
XNS

i ,Hj

)
= min

Xi∈A
(DE (Xi,Hj)) (6)

Let the subset of the non-dominated solution set consisting of all such non-contributing solutions be
ANS . The proportion of non-contributing solutions in the non-dominated solution set is given by NSX =∣∣ANS

∣∣ / |A|. In this work, this proportion NSX is reported as an indicator to reflect the amount of outliers
i.e., how many non-dominated solutions of the final population are not the nearest neighbors of any point
in HIGD (the set representing the true Pareto-optimal Set).

1It should be noted xMIN
i and xMAX

i are the bounds of the ith variable over true Pareto-optimal Set, not over the decision
space D.
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Table 1: Cartesian coordinate plots of PSs and PFs for some 2-objective MMMOPs viz. MMF1 to MMF7 and MMF1 z and
MMF1 e.

Removing ANS from A does not change IGDX i.e., IGD(A,HIGD) = IGD(A−ANS ,HIGD). However,
to note how far the outliers are from the surface of true Pareto-optimal Set, in this work, the convergence
metric of ANS is evaluated in the decision space with respect to HCM i.e., CM NSX = CM

(
ANS ,HCM

)
.

If both NSX and CM NSX are large, it implies that a large number of solutions are far away from the
true Pareto-optimal Set.

3. Comparison by Visualization of Results

The Cartesian coordinate plots of the 2-objective MMMOPs are presented in Tables 1 and 2. For
comparison, the results of LORD, MO Ring PSO SCD [3] and the ground truth (ideal solutions) are plotted.
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Table 2: Cartesian coordinate plots of PSs and PFs for some 2-objective MMMOPs viz. MMF8 to MMF13 and Omni-test,
SYM-PART simple and SYM-PART rotated.

Similarly, the Cartesian coordinate plots of the 3-objective MMMOPs are presented in Table 3 for comparing
the results of LORD-II, MO Ring PSO SCD [3] and the ground truth (ideal solutions).

3.1. Performance of LORD in objective space

It can be seen from Tables 1 and 2 that in most of the cases the number of outliers (points which have
not converged on the ideal surface of PF) present in the results of MO Ring PSO SCD are much more than
those of LORD. This indicates the better convergence of LORD than MO Ring PSO SCD. However, just
on the basis of the plots, it is difficult to conclude regarding the diversity of solutions in the objective space
as both the algorithms produce relatively uniform solution distribution.
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Table 3: Cartesian coordinate plots of PSs and PFs for 3-objective MMMOPs.

3.2. Performance of LORD in decision space

From Tables 1 and 2, it can be seen for all MMMOPs except MMF1 e and MMF8, the solution dis-
tribution in the decision space is atleast as good as that provided by MO Ring PSO SCD. In some cases,
such as MMF2, MMF3 and MMF10, the solution distribution is evidently superior than those obtained by
MO Ring PSO SCD. The poor performance for MMF1 e and MMF8 indicates the need for better decom-
position methods in the decision space.

3.3. Performance of LORD-II in objective space

While MMF14 and MMF14 a are implemented to have one global PF, MMF15 and MMF15 a have one
global and one local PF. The PFs for these problems are a spherical non-convex surface with the global
being located at a radius of 2 and the local being located at a radius of 2.2, centering the origin of the
objective space, in the first hyper-octant. As seen from Table 3, in the same function evaluation budget,
almost all candidates have converged on the global surface of PF for LORD-II which is not the case for
MO Ring PSO SCD.

3.4. Performance of LORD-II in decision space

To realize the reason behind presence of outliers for MO Ring PSO SCD, the corresponding decision
space can be analyzed. While MMF14 and MMF14 a are implemented to have two global PSs, MMF15 and
MMF15 a has one global and one local PS. As shown in the true solutions in Table 3, the top-most PS for
MMF14 and MMF14 a acts as a local PS for MMF15 and MMF15 a, respectively.

By looking into the decision space, it can be realized that for MMF15 and MMF15 a, many solutions
are stuck at the local optimal surface for MO Ring PSO SCD which has been successfully overcome by
LORD-II. This establishes the superiority of LORD-II over MO Ring PSO SCD.

4. Population Dynamics in Decision and Objective Space

The experiment performed in [3], which studies and compares the convergence behavior of MO Ring PSO SCD
in the decision space, is repeated in this work for comparing the corresponding behavior of LORD and LORD-
II with MO Ring PSO SCD [3] and DN-NSGA-II [12]. For this experiment, the proportion of solutions in
each of the four distinct regions of MMF4 (Fig. 1a) is calculated per generation. Ideally, for uniformly
distributed solutions, these proportions should reach and saturate at 25%. For all the EAs, npop = 800 and

6



Figure 1: Solution distribution of MMF4 problem in the decision space (a), population dynamics in the decision space for four
algorithms: DN-NSGA-II (b), MO Ring PSO SCD (c), LORD (d) and LORD-II (e), population dynamics in the objective
space using D metric for these algorithms (f).

Gmax = 100 is considered with the remaining parameters as specified in Section IV of the main manuscript.
Each of the EAs are allowed to run 5 times and the mean proportions are plotted for DN-NSGA-II (Fig.
1b), MO Ring PSO SCD (Fig. 1c), LORD (Fig. 1d) and LORD-II (Fig. 1e). As seen from these figures,
the proportion of solutions in 3 regions is steady near 25-27% for both LORD and LORD-II. For LORD,
the proportion in region 4 fluctuates between 20 to 25%, whereas for LORD-II, it is steady around 19-21%.
Thus, the convergence behavior of LORD and LORD-II is intermediate between that of MO Ring PSO SCD
and DN-NSGA-II.

Along with the diversity of solution in decision space, the diversity of solution in objective space is also
important. For this experiment, D metric [10] is used as given by (5) with ndir = 800. D metric indicates
the deviation between ideal and actual solution distribution in the objective space at the Gth generation
and hence, it should be 0 ideally.

For the population at each generation, D metric is obtained for all the four EAs and plotted in Fig. 1f.
As shown, the diversity of solutions in objective space for MO Ring PSO SCD severely deteriorates with
generations. This may be a result of the crowding illusion described in Fig. 2 of the main manuscript.
On the other hand, for LORD, although D metric has not reached 0, a decreasing trend is observed. For
LORD-II, the D metric has reached the ideal value roughly by 25 generations. These evidences support the
enhanced diversity preservation of the proposed frameworks in the objective space without sacrificing too
much on the distribution in the decision space.

All the above-mentioned experiments establish the efficacy and the robustness of using the proposed
LORD and LORD-II frameworks for addressing multi-objective optimization problems (MMMOPs or oth-
erwise).

7



5. Spectral Clustering versus k-means Clustering

This experiment considers the example dataset in Fig. 1 of the main manuscript for MMF4 problem
having four subsets in the PS. The outcome of clustering it using the approach outlined in Section 3.2 of
the main manuscript is compared against the outcome of k-means clustering. For k-means clustering, k = 4
is used as MMF4 has 4 subsets in the PS. For spectral clustering, the thresholding factor αL for the nearest
neighbor graph was varied from 0.01 to 0.2 and best results were obtained for αL = 0.046. These results are
illustrated in Fig. 2.

(a) True PS (Fig. 1a) (b) Spectral Clustering (proposed) (c) k-means Clustering

Figure 2: Comparing the outcome of spectral clustering with k-means clustering on MMF4 problem.

As seen from Fig. 2, the proposed method (using spectral clustering) can efficiently separate X1 to X4

into four different clusters. Specifically, it produces 10 clusters: 4 large clusters roughly corresponding to the
4 subsets in PS, and 6 singleton clusters in the boundary regions. On the other hand, each cluster produced
by k-means spans over two or more subsets of the PS. Also, the four equivalent solutions X1 to X4 have
not been separated into four distinct clusters using k-means. Thus, spectral clustering is more effective in
dealing with the effects of crowding illusion.

6. Computational effort involved in filtering

The spectral clustering involved in the filtering stage involves the calculation of Euclidean distance
between all pairs of candidates in a set of solutions And. Thus, the complexity of the filtering step involves

a term O
(∣∣And

∣∣2). This study is dedicated to show that in average case, this term doesn’t have a large

influence on the overall execution time of the proposed algorithms. The following points can be noted in
this favor:

• Either of the filtering strategies (LORD/LORD-II) in the overall framework (Algorithm 1) is executed
only if the parent candidate does not dominate the child candidate in line 7.

• As LORD and LORD-II are steady-state algorithms, this clustering may be done in an incremen-
tal/online manner [13] which can further reduce the complexity.

• Additionally, for LORD, the set And to be clustered is only the last non-domination rank (Rc). It
is expected that this set will be small in size towards early generations and gradually increase to
population size (npop). Thus, an experiment is conducted to see the ratio of number of times the
filtering is called with

∣∣And
∣∣ being within 10% of npop to

∣∣And
∣∣ being above 90% of npop. The average

ratios are illustrated in Fig. 3. This experiment indicates that as almost all the ratios are above 1,
50% or more number of times clustering is called with

∣∣And
∣∣ ≤ 10% npop.

Thus, the execution time of the entire algorithm is not very large. However, further research to improve
the speed of the proposed algorithm is not the primary focus of the current work.
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Figure 3: Ratio of number of filtering calls with
∣∣And

∣∣ ≤ 10% npop to
∣∣And

∣∣ ≥ 90% npop. Note that this ratio is higher than
10 for MMF2 and MMF3.

7. Conclusion

As the modality of a real-world problem is often unknown, an evolutionary algorithm designed for MM-
MOPs, should also perform equally good for unimodal multi-objective optimization problems. Moreover,
the convergence in the objective space is the foremost criteria to be established before dealing with the
solution distributions in the objective and decision space. The proposed frameworks, LORD and LORD-II,
provide themselves as robust alternatives for various kinds of multi-objective and many-objective optimiza-
tion problems, respectively. Nonetheless, it is a preliminary work in this direction and better methods for
improving the performance of evolutionary algorithms for MMMOPs are open for further research.

Acknowledgments

This work is partially supported by Indian Statistical Institute, Kolkata and by J. C. Bose Fellowship
(SB/SJ/JCB-033/2016) of Department of Science and Technology, Government of India.

References

[1] R. Tanabe, H. Ishibuchi, A review of evolutionary multi-modal multi-objective optimization, IEEE Transactions on Evo-
lutionary Computation (2019) 1–9doi:10.1109/TEVC.2019.2909744.

[2] J. J. Liang, B. Y. Qu, D. W. Gong, C. T. Yue, Problem definitions and evaluation criteria for the CEC 2019 special
session on multimodal multiobjective optimization, Technical Report, Computational Intelligence Laboratory, Zhengzhou
University (2019).

[3] C. Yue, B. Qu, J. Liang, A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjec-
tive problems, IEEE Transactions on Evolutionary Computation 22 (5) (2018) 805–817. doi:10.1109/TEVC.2017.2754271.

[4] S. Bandyopadhyay, A. Mukherjee, An algorithm for many-objective optimization with reduced objective computations: A
study in differential evolution, IEEE Transactions on Evolutionary Computation 19 (3) (2015) 400–413.

[5] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE
Transactions on Evolutionary Computation 6 (2) (2002) 182–197. doi:10.1109/4235.996017.

[6] Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted
generational distance metric, in: 2016 IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 5222–5229.
doi:10.1109/CEC.2016.7748352.

[7] P. A. N. Bosman, D. Thierens, The balance between proximity and diversity in multiobjective evolutionary algorithms,
IEEE Transactions on Evolutionary Computation 7 (2) (2003) 174–188.

9



[8] K. Li, K. Deb, Q. Zhang, S. Kwong, An evolutionary many-objective optimization algorithm based on dominance and
decomposition, IEEE Transactions on Evolutionary Computation 19 (5) (2015) 694–716.

[9] J. Bader, E. Zitzler, HypE: An algorithm for fast hypervolume-based many-objective optimization, Evolutionary compu-
tation 19 (1) (2011) 45–76.

[10] R. Sengupta, M. Pal, S. Saha, S. Bandyopadhyay, Population dynamics indicators for evolutionary many-objective opti-
mization, in: Progress in Advanced Computing and Intelligent Engineering, Springer, 2019, pp. 261–271.

[11] Y. Tian, R. Cheng, X. Zhang, F. Cheng, Y. Jin, An indicator based multi-objective evolutionary algorithm with reference
point adaptation for better versatility, IEEE Transactions on Evolutionary Computation (2017).

[12] J. J. Liang, C. T. Yue, B. Y. Qu, Multimodal multi-objective optimization: A preliminary study, in: 2016 IEEE Congress
on Evolutionary Computation (CEC), IEEE, 2016, pp. 2454–2461.

[13] R. Langone, O. Mauricio Agudelo, B. De Moor, J. A. Suykens, Incremental kernel spectral clustering for online learning
of non-stationary data, Neurocomputing 139 (2014) 246 – 260. doi:https://doi.org/10.1016/j.neucom.2014.02.036.
URL http://www.sciencedirect.com/science/article/pii/S0925231214004433

10


